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Graphene sheets are made of carbon atoms that remain located at the vertices of
hexagonal rings. The hexagons generated by a deformation are neither necessarily planar,
nor isometric to one another. But all atoms can be identified with the vertices of a planar
network of regular hexagons with equal side length. The smallness of the length at rest
- 0.14 nm - leads us to use a discrete homogenization technique in order to replace the
lattice by an equivalent continuous medium.

It is easily seen that a hexagonal lattice can be covered by translating an elementary
Y-shaped pattern made of three segments (or atomic bonds) and of two nodes (or carbon
atoms). For modeling the whole of this discrete structure, we use in this talk a simple
energetic model (more complicated energies such as the Tersoff-Brenner functional can
be used as well). The internal energy contains a term that accounts for the changes of
length between adjacent atoms and another term that accounts for angle variations between
adjacent bonds. The equilibrium is modelized by a minimization problem in terms of the
deformed positions of all carbon atoms.

The Euler-Lagrange equation of this problem is equivalent to the equilibrium system
in a large deformation framework of a set of elastic bars that interact by means of moments.
This is an algebraic system, not a differential system. By using the homogenization tech-
nique that we set up for the modeling of the myocardial tissue, we obtain the equilibrium
equation of the equivalent continuous medium. This is a system of three partial differential
equations that makes apparent what the equivalent macroscopic stress vectors are. Then
we identify the macroscopic constitutive law that we are searching for: with any 3x2 ma-
trix, that stands for the gradient of a macroscopic deformation, we have to associate two
stress vectors. Obtaining this pair of vectors requires solving an implicit equation which
is the so-called self-equilibrium equation of the reference pattern. This equation whose
unknown is a vector can be seen as the Euler-Lagrange equation of an energy defined on
the reference pattern and existence follows. The obtained model is a nonlinear membrane
model.

Linearizing the above nonlinear membrane problem around a uniformly extended state
gives rise, as in similar settings, to a linear membrane problem. The simple geometric
structure of the lattice allows to compute explicitly all equivalent material constants in
terms of microscopic data.

For a graphene sheet which undergoes deformations that remain planar, we obtain by
linearizing around the identity a bidimensional elasticity model and we compare equivalent
material constants (Young’s modulus and Poisson’s ratio) with experimental values.
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